
Yootles: A Social IOU System
Y$Id: yootles.texi 539 2008-04-22 09:07:00Z dreeves $

Daniel Reeves, Tejaswi Kasturi, David Pennock,
Sandeep Rathour, Prasenjit Sarkar,
Bethany Soule, George Levchenko

Yahoo! Research

i

Table of Contents

1 The Yootles System . 1
1.1 Yootles Accounts vs. Yootles Users . 1
1.2 IOUs . 1
1.3 Repeating IOUs . 2
1.4 Multilateral IOUs . 2
1.5 Currencies . 4
1.6 Interest . 4
1.7 Credit . 4
1.8 Access Control . 4

2 Use Cases . 7
2.1 Issuing IOUs between Facebook users . 7
2.2 Issuing an IOU in Facebook to someone not on Facebook 7
2.3 Fund-raising with Yootles . 8
2.4 Shared water bill . 8
2.5 Renaming an account . 8

3 Data Structures for Yootles 10
3.1 Data Structures Related to Accounts and IOUs 10

group . 10
account . 10
currency . 10
rawIOU . 10
atomicIOU . 11
intRate . 11
credit . 12

3.2 Data Structures Related to Users . 12
user . 12
aliastype . 12
alias . 12
access . 13

4 The Yootles API . 14
4.1 API Calls by Users . 14
4.2 API Calls by Trusted Applications . 15
4.3 API Output . 16

4.3.1 Output Formats . 16
4.4 Special Syntax for Specifying Accounts and Aliases 18

4.4.1 Specifying users by alias . 18
4.4.2 Bracket syntax for indirectly specifying accounts 18
4.4.3 Macro for username of invoking user . 18

ii

5 Yootles Commands . 19
5.1 usr (updating and querying users) . 19

Synopsis . 19
Examples . 19

5.2 addusr (creating new users) . 21
Synopsis . 21
Example . 21

5.3 reg (macro for registering/bootstrapping a new user into the
system) . 22

5.4 alias (creating, updating, and querying user aliases) 23
Synopsis . 23
Examples . 23

5.5 request (email a user their username and password) 25
Synopsis . 25
Example . 25
Known Bugs . 25

5.6 acct (querying and setting access control) . 26
Synopsis . 26
Examples . 26

5.7 grp (querying and adding account groups) . 28
Synopsis . 28
Examples . 28

5.8 owe (adding or modifying an IOU) . 30
Synopsis . 30
Example . 30

5.9 tran (querying existing IOUs) . 32
Synopsis . 32
Examples . 34
Known Bugs . 35

5.10 bal_old (querying balances) . 36
Synopsis . 36
Examples . 37
Known Bugs . 37

5.11 bal (querying balances) . 38
Synopsis . 38
Examples . 38
Known Bugs . 39

5.12 intr (querying and setting interest rates) . 40
Synopsis . 40
Examples . 40
Known Bugs . 41

5.13 cred (querying and setting credit limits) . 42
Synopsis . 42
Examples . 42
Known Bugs . 43

5.14 cur (managing currencies) . 44
Synopsis . 44
Examples . 44

iii

5.15 merge (merging/renaming accounts) . 46
Synopsis . 46
Example . 46
Known Bugs . 46

5.16 Acknowledgments . 46

Appendix A Future Features 47

Appendix B Other Commands in Yootopia . . . 48

Appendix C Facebook Application Mockups
. 49

C.1 Use case 1: Installing the Yootles application 49
C.2 Use case 2.0: entering a simple IOU . 51
C.3 Use case 2.1: entering an IOU for someone else 54
C.4 Use case 2.2: entering more complex transactions 60
C.5 Use case 3: balances and managing your accounts 62

Index . 66

Chapter 1: The Yootles System 1

1 The Yootles System

Yootles is a system for declaring IOUs between people on a social network. It is designed to
allow people to jot down who paid for dinner or other transactions that people often want
to but forget to keep track of. But it’s useful for much more. It can be used for things
like tracking rent payments, sharing utility bills, even tracking interest on personal loans.
And it supports non-monetary currencies. Yootles in fact refers to the seminal currency
in the system: an abstract measure of happiness or utility used in a suite of forthcoming
applications including voting and wagering and various incentive mechanisms.

The next incarnation of the Yootles IOU system will support arbitrary IOU routing
(see http://yootles.com/trustnets.pdf). The current version supports bilateral accounting
of IOUs with some advanced accounting features. It will always be possible to export
your transaction history in an open format so you will never be tied to any particular
implementation. (You wouldn’t use Flickr without assurance that you could always retrieve
your photos—Yootles treats your IOUs the same way.) In fact, your IOUs are always stored
exactly as you type them so you can always independently verify everything the Yootles
system tells you about your accounts and your balances.

1.1 Yootles Accounts vs. Yootles Users

A user is a person who logs in to the Yootles system. An account is an entity that can
issue and receive IOUs. A user may have several accounts, perhaps subaccounts to keep
track of different spending categories, or accounts for friends who are not actual users in
the system. Accounts may also be created for purposes such as charity fundraising that
aren’t tied to any particular user. All accounts are specified by an account group and an
account name within that group, separated by a colon (e.g., "smithfamily:alice"). New
users creating their first accounts need not know about the concept of groups—in that case
a default account is created by making the group name the username and the account name
the user’s initial(s) or first name, e.g., "alice:ac" or "alice:alice". Note that, while group
names must be globally unique, account names must only be unique within groups. For
example, jets:bob and sharks:bob are entirely distinct accounts. By default, all users
have access to all accounts and simply issuing an IOU to or from a nonexistent account
creates that account. We describe this open access philosophy and how to limit it, along
with other relationships between users and accounts below (see Section 1.8 [Access Control],
page 4).

1.2 IOUs

At its most basic an IOU is a simple transfer from one account to another. We call this
an atomic IOU. Yootles also supports two generalizations: repeating IOUs and multilateral
IOUs. Fundamentally, all IOUs are broken down into atomic IOUs, but Yootles does not
store them this way1 because this would clutter the transaction history and in fact there is
additional information implicit in the fact that an IOU came from a repeating or multilateral
IOU that would be lost if all IOUs were atomized.

From a user’s point of view a settlement is the opposite of an IOU. The Yootles system,
however, has no conception of settlements. When someone makes good on (settles) a past

1 This is not literally true. It stores atomic IOUs but only for caching/computational purposes.

http://yootles.com/trustnets.pdf

Chapter 1: The Yootles System 2

IOU it is recorded as simply another IOU in the opposite direction. We leave it to the user
interface to add whatever layer is deemed appropriate to make that intuitive. (Note that
this invariably trips people up.)

1.3 Repeating IOUs

A repeating IOU specifies a time interval that the IOU automatically repeats, e.g., "every
2 weeks". IOUs can repeat indefinitely or end at a specified time. When an end time is
specified it is not taken to be the time of the last IOU but rather a time after which no
further IOUs will be generated. The last repeated IOU is prorated for the amount of time
between the last IOU and the end time, compared to the repeat interval. For example, a
Y$60 IOU that repeats semiannually, issued on 2008 January 1 and ending 2009 April 1
will be atomized into:

• Y$60 on 2008 Jan 1

• Y$60 on 2008 Jul 1 (6 months later)

• Y$30 on 2009 Jan 1 (another 6 months later, but with only 3 months till IOUs stop)

Note that, consistent with the above interpretation of end date, if the end date coincides
with the last IOU date then the last payment will be prorated to zero. The reason for
this interpretation of the end date is that it preserves the property that the total amount
paid divided by the elapsed time between start and end is always exactly equal to the IOU
amount. User interfaces may want to highlight the prorated amount of the last payment to
avoid any confusion. The API makes it easy to do that.2

1.4 Multilateral IOUs

Multilateral IOUs are IOUs that are shared between some set of accounts. Instead of
specifying a single issuer account and recipient account, either or both of these may be a
set of accounts, specified as mathematical expressions in which the accounts are treated as
variables and the corresponding coefficients indicate proportions by which the IOU amount
is split between the issuers or recipients. This turns out to be a simple and elegant way to
specify group IOUs, as the following examples illustrate:

Multilateral IOU Atomic IOUs

10 from alice to bob+carol • 5 from alice to bob

• 5 from alice to carol

Multilateral IOU Atomic IOUs

2 Admittedly, this interpretation of the end date will be confusing to users but the alternatives are worse.
For example, having one repeating IOU pick up where another ends (perhaps the rent went up) will
work correctly under this model.

Chapter 1: The Yootles System 3

30 from alice+2bob to carol • 30*1/3 = 10 from alice to carol

• 30*2/3 = 20 from bob to carol

I.e., Alice nets -10, Bob nets -20, and Carol nets +30.

Multilateral IOU Atomic IOU

20 from alice+bob to carol+deb
• 10 from alice to carol+deb

• 10 from bob to carol+deb

which becomes

• 5 from alice to carol

• 5 from alice to deb

• 5 from bob to carol

• 5 from bob to deb

I.e., Alice nets -10, Bob nets -10, Carol nets +10, and Deb nets +10.

In the following example, Alice and Bob have dinner and Alice orders a $7 dish, Bob a
$9 dish, and the bill with tax/tip comes to $20. They each chip in $10.

Multilateral IOU Atomic IOUs

20 from 7alice+9bob to 10alice+10bob
• 8.75 from alice to alice+bob3

• 11.25 from bob to alice+bob

which becomes

• 4.375 from alice to alice (this is a
no-op)

• 4.375 from alice to bob

• 5.625 from bob to alice

• 5.625 from bob to bob (also a no-op)

The above has a net effect of 1.25 from Bob to Alice. This is the precise amount,
allocating tax/tip proportional to meal costs, that Bob owes Alice after she put in more
than her share—10 instead of 7/16*20—for the meal).

The last example shows how—once you’re used to the powerful and perhaps initially
intimidating language for expressing them—you can track complicated multilateral IOUs
by specifying very concisely the nature of the events that occasioned them. This will turn

3 Note that "10alice+10bob" is equivalent to "alice+bob", i.e., they each receive half, or $10 out of $20.

Chapter 1: The Yootles System 4

out to be valuable for various Yootles decision and prediction mechanisms. Interfaces can
sugar-coat this underlying language in various ways for less sophisticated users. In the
initial release of the Yootles Facebook application, the full power of multilateral IOUs will
not be exposed at all.

1.5 Currencies

Currencies can be created for anything—hours of babysitting, borrowed books, beers, ounces
of gold, points, kudos, and even, of course, units of happiness. All currencies are publicly
available to everyone. There is no such thing as a private currency, just obscure ones.
The Yootles system does not track exchange rates between any currencies. It tracks your
balances for each currency you have dealt with and keeps them entirely separate.

1.6 Interest

Every pair of accounts at every moment in time has an interest rate (which applies to all
currencies) that causes positive balances to become more positive and negative balances
to become more negative (or vice versa if the interest rate is negative, which is allowed4).
Anyone who can issue IOUs for both accounts (see the Access Control section below) can
change the interest rate for an account pair at any time. Interest rates can also be changed
retroactively.

1.7 Credit

Every directed pair of accounts has a credit limit for each currency, initially zero. For
example, Alice can state that she trusts Bob up to 10 yootles, meaning that she is willing
to issue her own IOU of 10 yootles in exchange for receiving an IOU from Bob for the same
amount, assuming the interest rate differential is not unfavorable. Credit limits are the
basis of automatic IOU routing (see http://yootles.com/trustnets.pdf). Credit limits can
be specified in the current Yootles system but automatic IOU routing is not done.5

1.8 Access Control

As explained above, there is a strict conceptual separation between Yootles accounts and
users. All of the back-end processing is done strictly in terms of accounts, and users can
manipulate those accounts according to an access policy. Specifically, there are six flags
that specify a given user’s relationship to a given account (we use a running example with
alice as a representative user accessing the account jets:bob):

4 And conceivably desired if you wanted to formalize the informal social practice of gradually forgiving
debts over time.

5 In a future release we will consider whether it should be possible for different chunks of credit to have
different interest rates. We decided against the extreme of having every IOU be able to specify a different
interest rate because people can always approximate that by using separate subaccounts. A fully general
specification of how much I trust some user Alice means being able to specify the interest I would
require as a function of my balance with her. For example, when my balance is negative (I owe Alice
money) then any interest rate, positive or negative, is acceptable (I’ll just pay up if it’s too high), 0%
may be acceptable for balances up to +20 (i.e., Alice owing me $20), 5% up to $200, 10% up to $1000,
and infinity% beyond that which is equivalent to setting a hard limit of $1000. But even that level
of generality still misses something, namely liquidity—the interest rate should depend on how long a
balance is outstanding. So until we get this aspect of the design fully baked we’ll let it suffice to give
users full manual control over their interest rates.

http://yootles.com/trustnets.pdf

Chapter 1: The Yootles System 5

• root – Having root access on an account means being able to change access settings
for other users. If user alice has root access on jets:bob then alice was the original
creator of jets:bob or had root status conferred by another root user. By definition,
only root users can change this flag, with one exception: if no user has root access to
an account (i.e., the sole root user revoked their own root access) then the account is
considered an orphan and any user can set root access. (It is thus safer to transfer root
access by setting it for the new user before revoking it for the old user.)

• view – Having view access on an account means being able to view IOUs involving
that account. For example, if view is true for <alice, jets:bob> then alice can view
all IOUs involving jets:bob. Only root users can change this flag.

• ctrl – Having control access on an account means being able to issue IOUs from that
account. With ctrl access, alice can issue IOUs from jets:bob. Note that this is
the default for all users and all accounts. Only root users can change this flag.

• main – When main is set to true for a user/account pair, it indicates that that account
is the user’s main account. Designating account jets:bob as alice’s main account
means it is the one referred to by the special account designating syntax "[alice]". I.e.,
square brackets around a username is syntactic sugar for the main account of that user.
Anyone with view and ctrl access can make an account their main account unless it is
already the main account of someone else. A user need not have a main account (and
won’t have one until they choose or create one) in which case using the square bracket
designation for that user will be treated as an error.

• mine – This field is typically treated as boolean but can in fact be set to any real
number in [0,1] where 0 ("not mine") is interpreted as false and 1 ("all mine") as true.
For a user to have a mine setting of x for an account means that a fraction x of that
account’s balance should be included in the user’s net balance. Conceptually, this field
indicates what fraction of an account belongs to the user. Under this interpretation,
the mine settings for all users for a given account should sum to one, though this is not
enforced. As an example, if mine=1 for <alice, jets:bob> then account jets:bob is
treated as alice’s subaccount and is included in alice’s net balance. Anyone with
view and ctrl access can make an account their subaccount (to any degree).

• ntfy – Having "notify access" on an account means you receive notifications when the
account receives or issues an IOU. (E.g., alice would be notified whenever jets:bob
receives or issues an IOU.) Only root users can change this flag, except that anyone
can turn off notifications for themselves, i.e., unsubscribe.

The following constraints should hold among these flags:
• main⇒ view & ctrl (you should always be able to view and control your main account)
• mine > 0 ⇒ view & ctrl (you should always have control over your subaccounts)
• main ⇒ mine = 1 (your main account should always show up in your net balance)

Note that ctrl does not imply view. (The default is ctrl and view access but it is
possible to have only ctrl access but not view access to an account.) Also note that mine
does not imply root since anyone can claim an account as their main account or subaccount.
This means you can do most of what you might want with no permission but will still have
to ask for permission to change the access of others. Notification is critical to such a liberal
access policy. Evil Eve can issue IOUs to herself from random accounts all day long but
users who manage those accounts can quickly repudiate them.

Chapter 1: The Yootles System 6

Finally, consider the case of the user alice creating the account jets:bob for Bob who
is not currently a user. No setup is required on Alice’s part—issuing an IOU to or from
jets:bob automatically creates that account. But instead of or in addition to specifying
an account name, a front-end using the Yootles API may allow Alice to specify Bob’s email
address. In that case the system will create a new user and a new account for Bob and
invite Bob to claim the account. Bob can change his username and account name if he
wants6 but if he only has one account the interface should keep him blissfully ignorant of
the concept of multiple accounts at all.) The following flags will be set for Alice and Bob
and the new account (which we’ll continue to refer to as jets:bob for simplicity):
• user alice, account jets:bob
• root = yes (since Alice created the account)
• view = yes
• ctrl = yes (this is the default for all users and accounts)
• main = no
• mine = 0
• ntfy = yes

• user bob (though Bob does not yet have a username), account jets:bob
• root = yes (since Alice specified a new user for this account, we assume she means

to confer root status)
• view = yes
• ctrl = yes
• main = no (only Bob can set an account to be his main account)
• mine = 1
• ntfy = yes (this will be moot if Alice did not provide an email address for Bob)

Future versions of Yootles may support a richer language for blocking classes of users.

6 Technically he can’t change his account name, he can just transfer the balance and copy the interest
rates and credit limits to a new account and ignore the old account, but this is encapsulated by the
merge command (see Section 5.15 [merge], page 46).

Chapter 2: Use Cases 7

2 Use Cases

2.1 Issuing IOUs between Facebook users

The Yootles Facebook application is currently the primary client for the Yootles API. Sup-
pose Alice is a Facebook user who just installed the Yootles application. Alice would like
to give Bob an IOU. The system should prompt Alice to choose a Yootles username (with
an auto-generated default available based on her full name) and a nickname for herself,
defaulting to her initials (possibly even a single initial). Suppose her username is alice
and her nickname is alc. The system creates the username alice and creates the account
alice:alc as Alice’s main account. Note that, although the group alice is created in this
process, Alice will never need to know about the concept of groups as long as she remains
a casual user.

Next, Alice enters the amount and a short string giving the reason for the IOU and selects
her friend Bob as the recipient via the usual "start typing a friend’s name" interface. More
complicated IOUs can be issued by setting other fields but everything except the amount,
the recipient, and the reason have reasonable defaults (see Section 5.8 [owe], page 30 for
details). If Bob has a main account already, say bob:b, the system uses it and Alice sees
in her transaction history an entry like "123 from alice:alc to bob:b for ‘lunch’ on 2007-
12-04" (possibly with the "alice:" group prefix redacted). Otherwise, Alice is prompted to
choose a nickname for Bob, say "bob", which the system will use to construct an account for
Bob using Alice’s group, e.g., alice:bob. In this case there is no reason to show the group
prefixes and Alice sees an entry like "123 from alice to bob for ‘lunch’ on 2007-12-04".

Bob will be notified that Alice has given him an IOU (as will Alice), with a link to edit
it or delete it,1 but the system requires no action from Bob. Carol might go through the
same process as Alice, leaving Bob with two accounts, alice:bob and carol:bob. Both
accounts will be marked as belonging to Bob (via the mine field in the access table) but
neither will be marked as his main account unless he chooses one. Or he can create a
new account altogether and consolidate the balances and close the accounts alice:bob and
alice:carol (see Section 5.15 [merge], page 46).

2.2 Issuing an IOU in Facebook to someone not on
Facebook

This case is similar to the previous one but instead of selecting Bob via the Facebook-
style interface, Alice supplies an email address for Bob. The system checks if there is a
Yootles user with that email address and, if so, whether that user has a main account. If
so, the email address is all that is required. Otherwise, Alice chooses a nickname for Bob
and the process continues as above with a new user created for Bob with whatever contact
information, such as email address, that Alice provided. Alice can also use the same process
without providing an email address or any contact information for Bob. In this case the
account created for Bob amounts to merely a subaccount of Alice’s. Bob may or may not
end up taking control of it in the future.

The notifications Bob receives will be something like: "Alice has given you an IOU
for . Click here to take control of your account or click here to stop receiving these

1 That is, replace it with a zero IOU.

Chapter 2: Use Cases 8

notifications." Nothing prevents Alice from issuing and IOU from Bob as well (equivalent
to a negative IOU to Bob), in which case the notification will be: "Alice has marked you
as owing her . Click here to take control of your account (or edit/repudiate this IOU)
or click here to stop notifications."

2.3 Fund-raising with Yootles

Dan announces to his friends that he is fund-raising for the American Lung Association
(ALA) and that if anyone would like to donate yootles just transfer them to the account
yooniversal:ala.2 Yootles have no exchange rate with real money but Dan pledges to his
friends that however many yootles end up in the ala account, he will donate that many
dollars to the ALA (and then transfer the yootles from yooniversal:ala to himself). In
effect, his friends are promising him influence in decisions, potential bragging rights in
wagers, and other forms of "yootility" in exchange for his donation to a worthy charity.

2.4 Shared water bill

Housemates can create a common group and easily do shared accounting within that group
(as well as with people outside of it). Multilateral IOUs are useful for this. Suppose the
housemates each have accounts: elmstreet:alice, elmstreet:bob, elmstreet:carol. A
typical IOU might be entered as "$100 from ‘alice+bob+3carol’ to bob for ‘water bill that
Bob paid for and for which Carol used 3 times as much water as anyone else’ in the group
elmstreet." The previous sections on multilateral IOUs and repeating IOUs (useful for
rent payments!) have more details about group accounting (see Section 1.2 [IOUs], page 1).

Note that this kind of group accounting does not require buy-in from all the members.
We have found that it is typically a minority of people in a group who are motivated to
track IOUs but that almost everyone is happy to be included so long as they aren’t relied
upon to do anything. By default, accounts such as elmstreet:carol are open for anyone
to view and issue IOUs to and from. All IOUs are repudiable so access can be tightened as
it is deemed necessary.

2.5 Renaming an account

Account names, like jets:bob, are treated as unique identifiers in Yootles—there are no
account numbers. This means the process of renaming an account is convoluted, but the
interface can mask this. Here we describe the underlying process.

Suppose Bob has an account old:bob he wants to rename to or merge in with new:bob.
If old:bob’s balances are all zero and Bob has root access he can revoke everyone else’s
access to old:bob and then simply abandon it. There is no way to actually delete it—this is
because entries with old:bob may still exist in people’s transaction histories. If old:bob has
one or more nonzero balances, renaming consists of transferring those balances to new:bob.
Say Alice owes old:bob 8 yootles. By issuing an IOU from old:bob to Alice for 8 yootles
we zero the Alice balance Then we issue an IOU of 8 yootles from Alice to new:bob. Now

2 This is based on a true story. We raised $1000 of real money for the Multiple Sclerosis Society using our
initial prototype this way.

Chapter 2: Use Cases 9

Alice owes new:bob instead of old:bob. We repeat this until all old:bob’s balances are
zero, and then (optionally) revoke access to old:bob.3

The above process can’t be entirely hidden from the end users. At the least, users who
have balances with old:bob will see two new IOUs, one zeroing out with old:bob and
one creating the balance with new:bob. This serves as a natural way to inform all those
concerned about account name changes. But from Bob’s perspective, the above process
can be automated and the API provides a command (see Section 5.15 [merge], page 46)
encapsulating the above steps of zeroing out balances in an old account and transferring
them to a new account (note that nothing prevents the new account from already existing
and having other balances).

3 With automatic payment routing, Bob could also just issue an IOU from old:bob to new:bob and sever
all credit limits coming into and out of old:bob except for a credit limit between old:bob and new:bob.
Then the system will automatically reroute IOUs to go through new:bob and old:bob will be at zero
with every account but new:bob. Bob then does one transfer between old:bob and new:bob to zero out
old:bob completely.

Chapter 3: Data Structures for Yootles 10

3 Data Structures for Yootles

The fundamental data structures for accounts, account groups, IOUs, interest, credit, and
currencies are given below. These are followed by data structures for users (people who
can log in to the Yootles system), aliases (e.g., Facebook ID or email address) and access
control (who can do what with which accounts). This is a subset of the underlying database
schema. Data types are given in parentheses. Timestamps are integers specifying the
number of seconds since 1970-01-01 00:00:00 GMT, i.e., unixtime. In the database, pointers
are realized as integer IDs.

3.1 Data Structures Related to Accounts and IOUs

group

An account group name is prefixed to an account name, creating a namespace for a re-
lated set of accounts. The fields for the group data structure are group name and group
description:
• name (string). Name of the account group, e.g., "jets" or "reevesfamily".
• desc (string). Text field describing the group.

account

An account (not to be confused with a user) represents an entity that can issue and receive
IOUs, extend or accept credit, etc.
• grp (pointer to group). The group this account belongs to.
• name (string). The account name, e.g., "alice", "bob", or "mom". Note that the

combination of grp and name must be globally unique and cannot be changed.
• desc (string). Text field describing this account.

currency

Currencies can include yootles, real money, time, even non-commodity items such as books
(if you wanted to keep track of books you lent to friends).
• code (string). Symbol for the currency. Initial values: {ytl, usd, inr, can, beer}.
• name (string). Name of the currency. Initial values: {Yootles, US Dollars, Indian

Rupees, Canadian Dollars, Beers}.
• desc (string). Text field describing the currency.

rawIOU

Raw IOUs, which may encompass multilateral IOUs and repeating IOUs, are stored in a
way that corresponds directly to what prompted issuing the IOU (see Section 5.8 [owe],
page 30).
• amt (string). The amount of the IOU, stored as a mathematical expression matching

/[\d\.\+\-\/*\ \(\)]+/ and evaluating to a number.
• from (string).1 The account(s) issuing the IOU, stored as a mathematical expression

where the symbols are account names.

1 This field is called issuers in the database as from is a mySQL reserved word.

Chapter 3: Data Structures for Yootles 11

• to (string).2 The account(s) receiving the IOU, same format as from. The accounts in
from and to can be prefixed with the account name (e.g., "yooniversal:alice") but if
not, use the group specified by grp.

• when (timestamp).3 Date/time of the IOU (need not be when it was actually issued).4

• why (string). Text field giving a short reason for the IOU.
• rpt (real). How often the IOU should automatically repeat (the period, not the fre-

quency). Default: -1, meaning don’t repeat.
• rptunit ({day, week, month, year}). The unit of measure for rpt. E.g., rpt=1/2 and

rptunit=year means repeat twice a year (semiannually).
• til (timestamp). Time after which no auto-repeats (if the last repeated IOU falls

before this time then prorate the last IOU). Default: -1, meaning forever.
• cur (pointer to currency). Currency. Defaults to yootles.5

• grp (pointer to group). The account group that the issuer and recipient accounts are
part of, if they don’t specify groups explicitly. This allows accounts to be specified as
just name instead of group:name. Default: "yooniversal".

• replaces (pointer to rawIOU). The IOU that this IOU replaces. Default: -1, meaning
it doesn’t replace anything.

atomicIOU

Atomic IOUs are the raw IOUs expanded out into bilateral, non-repeating IOUs. Atomic
IOUs are also created to keep track of interest payments. All atomic IOUs can be recon-
structed from the raw IOUs and the interest rates.
• amt (real). The amount of the atomic IOU.
• from (pointer to account).6 The account issuing the IOU.
• to (pointer to account).7 The account receiving the IOU.
• when (timestamp).8 Date/time of the atomic IOU.
• raw (pointer to rawIOU). The raw IOU which corresponds to this atomic IOU. Auto-

matically generated interest IOUs have this field set to null.

intRate

This data structure is used to specify an interest rate for a pair of accounts at a given time.
Note that interest rates are undirected, so, e.g., alice/bob and bob/alice cannot have
different interest rates.

2 This field is called recips in the database as to is a mySQL reserved word.
3 This field is called date in the database as when is a mySQL reserved word.
4 In a future version we may switch to storing timestamps as strings in YMDHMS order, with any delimiters

and with at least year and month specified. Normally that should be an interface issue, but we may
decide that the granularity with which the IOU time was specified is part of the information for the raw
IOU that we want to record, e.g., to be able to distinguish between "June of 2008" and "2008-06-01
00:00:00".

5 Users could in fact choose not to set currencies explicitly and just use groups to imply different currencies.
E.g., all IOUs in a group "babysitting" could implicitly be denominated in hours.

6 This field is called issuer in the database as from is a mySQL reserved word.
7 This field is called recip in the database as to is a mySQL reserved word.
8 This field is called date in the database as when is a mySQL reserved word.

Chapter 3: Data Structures for Yootles 12

• acct1 (pointer to account). The first account.
• acct2 (pointer to account). The second account.
• rate (real). The interest rate, stored as a fractional annual rate, not a percent, e.g.,

0.05 for 5%.
• date (timestamp). When this interest rate goes into effect (interest rates apply until

a new entry begins). Note we allow the setting of a whole historical interest timetable,
not just changing the interest rate over time.

credit

This data structure is used to specify credit limits (or "trust") between accounts. Credit
limits are directed, i.e., they need not be symmetric for a pair of accounts.

• issuer (pointer to account). The account issuing the credit.
• recip (pointer to account). The account receiving the credit.
• amt (real). The credit limit.
• cur (pointer to currency). The currency for this line of credit.

3.2 Data Structures Related to Users

All accounting is done in terms of the data structures in the previous section. There is
a strict conceptual separation between users and accounts. Following are data structures
pertaining to users.

user

This data structure stores usernames and passwords for users.

• username (string). Username with which the user accesses the Yootles system. Note
that there need be no connection between this name and the names of accounts the
user can access.

• passwd (string). The user’s password, stored as an md5 hash of password plus salt.

aliastype

An alias type is an attribute of a user specifying another identifier (besides username) for
that user. For example, "real name" or "email address" are alias types.

• code (string). Symbol for this alias type; one of {username, realname, email, yahoo,
aol, msn, phone, 4info, icq, google, facebook}.

• name (string). Name for this type, e.g., "Yahoo Messenger".
• desc (string). Description.

alias

The alias data structure gives an attribute/value pair for a user (where the attribute is
given by aliastype) in order to specify an alternate identifier for the user, such as Facebook
ID or email address.9

9 In a future version this could be generalized to arbitrary attribute:value pairs on users, such as for user
settings like timezone or preferred date format.

Chapter 3: Data Structures for Yootles 13

• user (pointer to user). The user.
• type (pointer to aliastype). The alias type.
• alias (string). The actual alias of the specified type, e.g., "bob@bob.com", "12345",

"Bob Smith", or "bobmeister12".

access

The access data structure encodes the ways in which a given user is allowed to access a
given account.
• user (pointer to user). The user.
• acct (pointer to account). The account.
• root (boolean). Whether this user can change these flags for other users.
• view (boolean). Whether this user can view all the IOUs for this account.
• ctrl (boolean). Whether this user can issue IOUs from this account. This defaults to

true for all users and all accounts.
• main (boolean). Whether this is the main account for this user (note that main implies

mine).10

• mine (real). The fraction of this account’s net balance that should be included in this
user’s net balance; typically 0 or 1.

• ntfy (boolean). Whether this user should get notified about IOUs for this account.

10 In the database a user’s main account is stored in the user table for performance reasons.

Chapter 4: The Yootles API 14

4 The Yootles API

Yootles API calls are made either by a specific Yootles user who specifies their Yootles
username and (hashed, salted) password with each call, or on behalf of a specific Yootles
user by a trusted application that provides an application-specific user alias and a (hashed,
salted) application key with every call.

In both cases, API calls are REST-style over HTTP. Contrary to true REST, the HTTP
status code is always set to 200 (success) with any application-level errors indicated in the
API output (see Section 4.3 [Output], page 16).1 Standard URI encoding is used in the
URLs. Spaces may be mapped either to "+" or "%20". Alphanumeric characters as well as
certain characters such as ":" and " " need not be escaped. The character "+", of course,
must be escaped since otherwise it will be decoded as a space.

In the current beta period the API can be accessed at the following URL instead of
yootles.com:
http://is002.yrl.re4.yahoo.com

4.1 API Calls by Users

The following is a template for an API command when the caller knows the Yootles username
(we call this the invoking user) and password:
http://yootles.com/api?cmd=COMMAND

&invoker=USERNAME
×tamp=TIMESTAMP
&key=KEY

with additional attr=val pairs making up the arguments for the command. For example,
here is an example call to issue a simple IOU from Alice to Bob (see Section 5.8 [owe],
page 30):
http://yootles.com/api?cmd=owe&amt=5&from=alice:ac&to=bob:b&why=lunch

&invoker=alice
×tamp=1179548280
&key=289fe8ab2b3c2c19

In the next chapter we present API calls in an abstracted form. For example, we write the
above as
alice> owe(amt=5, from=alice:ac, to=bob:b, why=lunch)

or more generally, as
USERNAME> COMMAND(attr=val, attr2=val2, ...)

This indicates that COMMAND is being called with the given named parameters and that
the call is being invoked by USERNAME.

The additional fields (key and timestamp, as well as app, described in the next subsec-
tion) are left implicit in the abstracted form. The timestamp field gives the unixtime when
the call was issued and the key field must be calculated as

1 This choice was made to accommodate simple implementations of the API (such as perl scripts using
LWP::Simple), but we may move closer to true REST in the future. Please send feedback about this to
dreeves@yootles.com.

Chapter 4: The Yootles API 15

KEY = md5(USERNAME + PASSWD + TIMESTAMP)
where PASSWD is the user’s password (and ‘+’ is string concatenation). By hashing the
timestamp, and not allowing old timestamps, the system limits replay attacks.

4.2 API Calls by Trusted Applications

The above suffices for applications that know usernames and passwords. Any user can, for
example, use the API with calls like the above to interact with their own accounts and
IOUs programmatically. We also allow access by trusted applications that do not (and
cannot) know individual users’ Yootles passwords but are nonetheless allowed to perform
actions on behalf of users. The Yootles system maintains a mapping from identifiers on
various services (including Facebook IDs, Yahoo Messenger and AIM screen names, email
addresses, phone numbers for SMS, etc.) so that a trusted application need only provide
the username or other identifier for its own service. For example, on Facebook if you have
the numerical Facebook ID for a user, make the API call as follows:
http://yootles.com/api?cmd=COMMAND

&invoker=facebook:FACEBOOKID
&app=APPNAME
×tamp=TIMESTAMP
&key=KEY

Anyone can apply for an application name (APPNAME) and key (APPKEY) by emailing
api@yootles.com. The key field above is then calculated as

KEY = md5(FACEBOOKID + APPKEY + TIMESTAMP).
Since the application uses Facebook’s authentication and is trusted, the Yootles password
for the user on whose behalf the call is being made need not be provided. Note that the
Facebook application must first create a Yootles user (see Section 5.2 [addusr], page 21) or
associate the Facebook ID with an existing Yootles user (see Section 5.4 [alias], page 23).
It may use any convention it chooses (e.g., FirstnameLastname); the addusr command
indicates availability of usernames. Users can later change their usernames (see Section 5.1
[usr], page 19), but a user using the Facebook application exclusively need never even know
what their Yootles username is.2

Other applications are analogous to the Facebook example. For example, the messenger
bot application makes API calls of the form
http://yootles.com/api?cmd=COMMAND

&invoker=yahoo:YAHOOID
&app=yimbot
×tamp=TIMESTAMP
&key=KEY

with KEY = md5(YAHOOID + APPKEY + TIMESTAMP). Besides Facebook and Yahoo Messenger,
there are additional invoker types for other interfaces including an email bot ("email") and
an SMS bot ("4info").

Finally, we allow the API to be called with the same consistent syntax even for calls by
users instead of applications. Namely,

2 The request command (see Section 5.5 [request], page 25) allows a Facebook user to learn their Yootles
username and password should they want to log in to another Yootles application.

Chapter 4: The Yootles API 16

http://yootles.com/api?cmd=COMMAND
&invoker=username:USERNAME
&app=raw
×tamp=TIMESTAMP
&key=KEY

and in fact the slightly simpler syntax given in the previous section is syntactic sugar for
the above more general format.

4.3 API Output

If you specify an additional field, output, you can choose the output format from the set
{xml, json, perl, lisp, mma, php} with xml the default.3 These and other output formats
are described in the next subsection.

All API calls return a set of labeled values, including a status code and a human-readable
message. Formatted as JSON, API output will look like this:
{ "status" : CODE,
"message" : MESSAGE,
... additional "attr":"val" pairs ... }

CODE is one of the following:
• 200 – Success.
• 400 – Syntax error—malformed or incorrect arguments.
• 401 – Authorization error—invoking user not authorized to perform the operation.
• 402 – General error or exception.
• 404 – User/account/etc. not found.
• 408 – Request timed out.
• 500 – Fatal error.
• 501 – Not yet implemented.

MESSAGE is some human-readable output for the command (useful for command line
interfaces such as the messenger bot, and also providing an explanation in case of error).
After that come additional attribute/value pairs specific to the individual command, if any.
Arguments for commands and their output are detailed in the next chapter.

4.3.1 Output Formats

Following is a hypothetical response that captures all the structure of the various Yootles
API responses, translated into several formats. All except YAML are currently supported.4

JSON

{ "status" : 200,
"message" : "hello world",
"foo" : [{"a":1, "b":2}, {"a":10, "b":20}],
"bar" : {"x":"one", "y":"two", "z":"three"} }

3 We will likely change the default to json soon.
4 Send us feedback about your preferred output formats to dreeves@yootles.com.

Chapter 4: The Yootles API 17

Perl

The following perl expression can be directly assigned to a hashref variable. The perl module
Data::Dumper generates data in the following form, given a hashref.

{ "status" => 200,
"message" => "hello world",
"foo" => [{"a"=>1, "b"=>2}, {"a"=>10, "b"=>20}],
"bar" => {"x"=>"one", "y"=>"two", "z"=>"three"} }

XML

Using the perl module XML::Simple with options NoAttr and rootname "ytl", the following
XML corresponds one-to-one with the perl expression above. Note that the XML output
cannot distinguish between a list containing just one element and the element itself. Also,
if a list is empty then the XML output will not include the tag for that list at all.

<ytl>
<status>200</status>
<message>hello world</message>
<foo> <a>1 2 </foo>
<foo> <a>10 20 </foo>
<bar> <x>one</x> <y>two</y> <z>three</z> </bar>

</ytl>

Mathematica

{ "status" -> 200,
"message" -> "hello world",
"foo" -> {{"a"->1, "b"->2}, {"a"->10, "b"->20}},
"bar" -> {"x"->"one", "y"->"two", "z"->"three"} }

Lisp (S-expression)

(("status" . 200)
("message" . "hello world")
("foo" . ((("a" . 1) ("b" . 2)) (("a" . 10) ("b" . 20))))
("bar" . (("x" . "one") ("y" . "two") ("z" . "three"))))

PHP

array(’status’ => 200,
’message’ => "hello world",
’foo’ => array(array(’a’=>1, ’b’=>2), array(’a’=>10, ’b’=>20)),
’bar’ => array(’x’=>"one", ’y’=>"two", ’z’=>"three"))

YAML

---!ytl
status: 200
message: hello world
foo:
- a: 1

Chapter 4: The Yootles API 18

b: 2
- a: 10

b: 2
bar:
x: one
y: two
z: three

4.4 Special Syntax for Specifying Accounts and Aliases

As described above, users and accounts are treated distinctly by the Yootles system. Users
can access any number of accounts and an account can be accessed by any number of users.
Each user, however, has at most one main account and in some applications it is convenient
to refer to accounts by the primary user. Additionally, it is often convenient to refer to
users by alias instead of username. The Yootles system supports macro expansion in API
calls to facilitate this and avoid the need for multiple lookup calls. Specifically, it allows
you to specify users by their aliases (such as Facebook ID or Yahoo ID) as well as refer to
a user’s main account indirectly by user.

4.4.1 Specifying users by alias

Similar to how accounts are specified by group:name, users may be specified by, for example,
yahoo:alice75 or email:alice@alice.com or facebook:24601. Anywhere a username
can be specified, an alias can be substituted.

4.4.2 Bracket syntax for indirectly specifying accounts

The special syntax [t:a] or [u] expands to the main account of user u or the user referenced
by alias t:a. This syntax can be used wherever an account is required. An error is returned
if the specified user has no main account.

4.4.3 Macro for username of invoking user

$INVOKER is special syntax that expands to the actual username of the invoking user. This
can be used anywhere. For example, set grp=$INVOKER to specify the invoker’s username
as the account group or use [$INVOKER] to refer to the main account of the invoking user,
per the bracket syntax above. (This is equivalent to [t:a] where t:a is an alias for the
invoking user.)

Chapter 5: Yootles Commands 19

5 Yootles Commands

5.1 usr (updating and querying users)

The usr command allows changing usernames and passwords and looking up users by their
aliases, such as email address or Facebook ID. Other commands allow the creation of
new users (see Section 5.2 [addusr], page 21) and adding or changing aliases for users (see
Section 5.4 [alias], page 23).

Synopsis

usr()
returns the invoking user’s username.

usr(username=u)
changes the Yootles username of the invoking user to u, returning the previous
username.

usr(passwd=p)
changes the password of the invoking user to p, returning the previous password.
(Note that passwd cannot be specified by applications, only users.)

usr(username=u, passwd=p)
changes both the username and password, returning the previous values.

usr(alias=t:a)
returns the username that has the given alias, t:a, where t is one of the follow-
ing alias types:1 {realname, email, yahoo, aol, msn, phone, 4info, icq, google,
facebook}.

Examples

1: Changing your username

If the application issuing the command knows the user’s password, the call is made, for
example, as follows:
http://yootles.com/api?cmd=usr&username=madeleine

&invoker=valjean
×tamp=1234567890
&key=3c7e8cc4b89de301

Otherwise, for a trusted application (e.g., the Yootles Facebook application which can
make calls on behalf of users) that has an application key, a call like the following is made:
http://yootles.com/api?cmd=usr&username=madeleine

&invoker=facebook:24601
&app=facebook
×tamp=123890
&key=fa3de669ef90ca6

Either of the above are expressed in abstracted form (see Chapter 4 [API], page 14) as:

1 The type "username" is also considered an alias type though it wouldn’t make sense to look up a user’s
username by their username.

Chapter 5: Yootles Commands 20

valjean> usr(username=madeleine)

The following is an example response to the above:
{ "status" : 200,
"message" : "Your username has been changed from valjean to madeleine.",
"username" : "valjean" }

2: Changing your password

alice> usr(passwd=abc123)

{ "status" : 200,
"message" : "Your password has been changed.",
"passwd" : "changeme" }

If both username and password are specified, both previous values will be included in the
output.

3: Looking up a user by alias

alice> usr(alias=email:bob77@yahoo.com)

{ "status" : 200,
"message" : "Yootles user bob has email address bob77@yahoo.com.",
"username" : "bob" }

Chapter 5: Yootles Commands 21

5.2 addusr (creating new users)

Any user can call addusr to create a new user. An application creating a new user will also
need to call the alias command (see Section 5.4 [alias], page 23) to create an alias for the
new user and the acct command (see Section 5.6 [acct], page 26) to associate an account
with the new user. The account may be an existing account (such as an account created by
a friend) or a new account, which can be created with the owe command (see Section 5.8
[owe], page 30).

Synopsis

addusr(username=u)
creates a new user with username u and system-generated password. If the user
u already exists, the command will return with status code 402.

Example

alice> addusr(username=carol)

{ "status" : 200,
"message" : "User carol has been created. Use the ‘request’ command

to retrieve the password." }

Or, if the username "carol" is taken, the following response is generated:
{ "status" : 402,
"message" : "Error: User carol already exists." }

Chapter 5: Yootles Commands 22

5.3 reg (macro for registering/bootstrapping a new user into
the system)

The reg command is a macro implemented in terms of the other Yootles API commands.
This is a placeholder for more complete documentation of this command.
Create a new user, associate the alias, create the main account, and
link the main account.
Eg, alias = facebook:24601, username = firstname_lastname,
account = firstname_lastname:firstname
force defaults to 0; if force=1 then g:ac can’t be specified
reg(username=u, alias=t:al, [force=f], [acct=g:ac])
if f==0 (0 is the default for f)

addusr(username=u) and abort if this fails
else

do addusr(username=u) with variations on u until it succeeds
let u = the username of the added user
let g:ac = u:u if acct not specified.
alias(alias=t:al) # NB: invoked with invoker=username:u
owe(amt=0.001, from=g:ac, to=yooniversal:admin, why=new_user_fee, cur=ytl)
acct(user=u, acct=g:ac, main=1, ntfy=1)

Chapter 5: Yootles Commands 23

5.4 alias (creating, updating, and querying user aliases)

The Yootles system stores for each user additional aliases such as email addresses and
instant messenger screen names. The alias command allows a user to query and update
their aliases, and to add new ones. Other commands allow looking up a user by alias (see
Section 5.1 [usr], page 19) and managing accounts for users (see Section 5.6 [acct], page 26).

The following parameters can be specified:
• aliastype – The alias type. E.g., "email".
• alias – The alias, with alias type. E.g., "email:alice@alice.com".
• aname – The descriptive name of the alias type, typically omitted.

Synopsis

alias()
returns a hash table mapping alias types to aliases for the invoking user. See
example 1 below.

alias(aliastype=t)
returns the alias of type t, along with the descriptive name of the alias type. If
no such alias type exists, the empty string is returned.

alias(alias=t:a, [aname=n])
adds or updates alias type t to alias a. It returns the previous values, or the
empty string if t did not already exist. If aname is also specified, this gives
the descriptive name for the alias type (replacing the old one if it exists). See
example 4 below.

Examples

1: Querying all aliases

alice> alias()

{ "status" : 200,
"message" : "Your aliases: email = alice@alice.com,

realname = Alice L. Canonikopolous,
facebook = 24601, yahoo = alice84",

"aliases" : {"username":"alice", "email":"alice@alice.ccom",
"realname":"Alice L. Canonikopolous", "facebook":24601,
"yahoo":"alice84"} }

2: Querying a specific alias

alice> alias(aliastype=yahoo)

{ "status" : 200,
"message" : "Your Yahoo Messenger alias is alice84.",
"alias" : "alice84",
"aname" : "Yahoo Messenger ID" }

Note that this is also the way to query the descriptive name (aname) for the specified alias
type.

Chapter 5: Yootles Commands 24

3: Querying a username

This works exactly like in the previous example—"username" is treated like any other alias
type. (Users, as opposed to trusted applications, will never need this since a user couldn’t
have issued the alias command without knowing their username.) Note that this usage
of the alias command has the same functionality as calling usr with no arguments (see
Section 5.1 [usr], page 19).
alice/24601> alias(aliastype=username)

{ "status" : 200,
"message" : "Your Yootles username is alice.",
"alias" : "alice",
"aname" : "Yootles username" }

4: Adding and modifying an alias

alice> alias(alias=openid:oid.org/alice, aname="Open ID")

{ "status" : 200,
"message" : "New alias added: Open ID (openid) = oid.org/alice",
"aliastype" : "",
"alias" : "",
"aname" : "" }

The output fields aliastype, aname, and alias give the previous values, or the empty
string if this is a new alias.
alice> alias(alias=facebook:24602)

{ "status" : 200,
"message" : "Facebook ID changed from 24601 to 24602.",
"aliastype" : "facebook",
"alias" : 24601,
"aname" : "Facebook ID" }

Chapter 5: Yootles Commands 25

5.5 request (email a user their username and password)

When an application creates a new user, the Yootles system generates a random password
for that user, which the application never sees (since applications have application keys and
can issue commands on behalf of users without knowing user passwords). A user using a
particular application need never know their Yootles username or password, but if the user
would like to use some other application that uses the Yootles API, the user will need to
provide their username and password to that other application. The request command
causes an email to be sent to the user with their username and password.

Synopsis

request()
returns success and, as a side effect, generates email. If email could not be sent—
for example, because no email alias is set (see Section 5.4 [alias], page 23)—it
returns status code 402.

Example

alice> request()
{ "status" : 200,
"message" : "Your Yootles username and password has been

sent to alice@alice.com" }

Known Bugs

There is only one "bug": this command has not been implemented yet. For the current
alpha version, the password is just always set to changeme and if you actually change it
and then forget it, you’ll have to email help@yootles.com. Note that trusted applications,
like the Facebook application, do not need to deal with user passwords.

Chapter 5: Yootles Commands 26

5.6 acct (querying and setting access control)

The acct command allows management of the access data structure (see Section 3.2 [User
Data Structures], page 12). That is, it allows the setting and querying of which users have
access to which accounts. Parameters for the acct command correspond directly to the
fields in the access data structure, namely: user, acct, main, mine, ntfy, root.

Synopsis

acct([user=u])
returns, for user u (default: the invoking user), the main account, a list of mine
accounts (accounts for which u has mine > 0), a list of ntfy accounts (accounts
for which u gets notifications), and a list of root accounts (accounts for which
u has root access).

acct(user=u, acct=a)
returns, for each access field, user u’s access to account a.

acct(acct=a)
returns, for each access field, the list of users (possibly empty) who have the
corresponding access to account a. Having mine>0 suffices to be included in the
list of users having mine access.

acct([user=u], acct=a, <access-settings>)
sets user u’s access to account a according to <access-settings> and returns
the previous access settings. The placeholder <access-settings> denotes any
nonempty subset of the access fields (see example 5). User u may be omitted
and will default to the invoking user.

Examples

1: Checking your own accounts

alice> acct()

{ "status" : 200,
"message" : "You (alice) have main account alice:alc (main)",
"main" : "alice:alc",
"mine" : ["alice:alc"],
"ntfy" : ["aliceposse:jointfund", "alice:mom", "alice:alc"],
"root" : ["alice:alc", "alice:mom"] }

2: Checking someone else’s accounts

alice> acct(user=bob)

{ "status" : 200,
"message" : "User bob has main account bob:b.",
"main" : "bob:b",
"mine" : ["bob:b"],
"ntfy" : ["bob:b"],
"root" : ["bob:b"] }

Chapter 5: Yootles Commands 27

3: Checking the access for a particular user/account pair

alice> acct(user=bob, acct=carol:c)

{ "status" : 200,
"message" : "User bob has the following access to the carol:c account:

root=0, view=1, ctrl=1, main=0, mine=0, ntfy=0",
"main" : 0,
"mine" : 0,
"ntfy" : 0,
"root" : 0 }

4: Checking who has access to a particular account

alice> acct(acct=carol:c)

{ "status" : 200,
"message" : "User carol has carol:c as their main account.",
"main" : ["carol"],
"mine" : ["carol"],
"ntfy" : ["carol", "alice"],
"root" : ["carol", "alice"] }

5: Setting access for a user/account pair

This example will only succeed if Alice has root access to the carol:c account.
alice> acct(user=bob, acct=carol:c, ntfy=1, mine=0.25)

{ "status" : 200,
"message" : "User bob’s access to account carol:c has been updated.",
"main" : 0,
"mine" : 0,
"ntfy" : 0,
"root" : 0 }

Chapter 5: Yootles Commands 28

5.7 grp (querying and adding account groups)

The grp command is used to query the list of groups relevant to the invoking user, to query
the accounts that belong to an account group, or to add new groups. The input parameters
are as follows:
• grp – The group name. May be omitted to get a list of all relevant groups.
• desc – A short description of the group. This field can be specified to update the group

description, or omitted if querying an existing group.

Synopsis

grp()
returns a list of all groups in which the invoking user owns an account (mine>0)
or has root access on some account.

grp(grp=g)
returns the description of the group and a list of the member accounts. This
command only succeeds if the invoking user owns an account in the group.

grp(grp=g, desc=d)
modifies the description of a group to d or creates group g if it does not exist.
It returns the previous description and the group name g or the empty string
if it did not exist.

Note that the description is required for adding a new group and that the command
returns the previous description when modifying it. It returns the empty string for both
grp and desc to indicate that a new group was created. An error is returned if a nonexistent
group is queried, and the group is not created in this case (see last example).

Examples

1: Listing groups

alice> grp()

{ "status" : 200,
"message" : "Groups: jets, sharks, alice, smithfamily, aliceposse.",
"groups" : ["jets", "sharks", "alice", "smithfamily", "aliceposse"] }

2: Querying a particular group

alice> grp(grp=jets)

{ "status" : 200,
"message" : "jets (a west-side gang) has members: alice, bob, carol.",
"grp" : "jets",
"desc" : "a west-side gang",
"members" : ["alice", "bob", "carol"] }

3: Creating a new group

alice> grp(grp=yahoos, desc="Yahoo employees")

Chapter 5: Yootles Commands 29

{ "status" : 200,
"message" : "New group ‘yahoos’ created: Yahoo employees.",
"grp" : "",
"desc" : "" }

4: Modifying a group

alice> grp(grp=yahoos, desc="Yahoo employees and friends")

{ "status" : 200,
"message" : "Description updated to ‘Yahoo employees and friends’.",
"grp" : "yahoos",
"desc" : "Yahoo employees" }

5: Nonexistent group

alice> grp(grp=losers)

{ "status" : 402,
"message" : "Account group ‘losers’ not found. Provide name and

description to create group.",
"grp" : "" }

Chapter 5: Yootles Commands 30

5.8 owe (adding or modifying an IOU)

The owe command issues an IOU, possibly a repeating and/or multilateral IOU (see Sec-
tion 1.2 [IOUs], page 1). The input fields correspond to the rawIOU data structure and
are described in greater detail there (see Chapter 3 [Data Structures], page 10). Note that
fields of type "timestamp" are specified in unixtime.

Synopsis

owe(amt=a, [from=u], to=t, [when=w], why=y, [cur=c], [grp=g], [replaces=r])
issues a non-repeating IOU of amount a, denominated in currency c (default:
yootles), from accounts u (default: the main account of the invoking user) to
accounts t at time w (default: now), logging y as the reason and with r giving
the ID of a previous IOU to replace, if any. If either account does not have a
group prefix, g is used. The main accounts of the specified users will be used.)
The output fields are given below.

owe(..., rpt=r, rptunit=u, [til=t])
issues a repeating IOU, with all parameters the same as for a non-repeating
IOU plus the addition of the above, specifying a payment period of r, measured
in units u, and a time t after which no more repeating IOUs will be generated
(default: t=-1, meaning IOUs repeat indefinitely).

The output fields for the owe command are as follows:
• iou – The ID for the new (raw) IOU.
• num – Number of IOUs (1 if not repeating, -1 if repeating indefinitely, never 0 or less

than -1, and includes the final IOU if repeating, even if it’s prorated to 0).
• last – Fraction at which the last IOU is pro-rated. This is always 1 for non-repeating

IOUs.
• accounts – List of accounts involved in this IOU.
• deltas – A list parallel to accounts with the deltas on those accounts’ net balances

due to this IOU (counting only the first IOU if repeating).
• atomized – List of the atomic IOUs (but not including repeating IOUs past the initial

IOU), i.e., a list of amt/from/to triples (represented as hash tables). For a normal
bilateral IOU this will simply echo the IOU as it was input, except that it will evaluate
the amount which may have been sent as (and is stored as) a mathematical expression.
Note that some multilateral IOUs will generate atomic IOUs from an account to itself—
it is up to the interface to filter these out or not (sometimes it can be helpful to see
them).

• spawn – List of accounts newly created due to this IOU. (Both groups and accounts
will be created as needed.) This list is a subset of accounts.

Note that the owe command is the only way to create new accounts (the amount may
be set to zero if no actual IOU is wanted). The notification for the IOU should make clear
that a new account was created so that in case of a typo the IOU can be reissued. Using an
IOU to create an account has the advantage that it gets logged in the transaction history.

Example

Chapter 5: Yootles Commands 31

Alice issues an IOU to a new user, Bob

The following call issues an IOU from user:alice (which maps to Alice’s main account,
e.g., alice:alc) to the account alice:bob (an account Alice is creating for her friend Bob)
for 12 yootles "for lunch":
alice> owe(amt=12, to=bob, why="for lunch", grp=alice)

{ "status" : 200,
"message" : "Your (alice’s) balance with bob has decreased 12 yootles.

You now owe bob 57 yootles.",
"iou" : 24601,
"num" : 1,
"last" : 1,
"accounts" : ["alice:alc", "alice:bob"],
"deltas" : [-12, 12],
"atomized" : [{"amt" : 12, "from" : "alice:alc", "to" : "alice:bob"}],
"spawn" : ["alice:bob"] }

Note that the only way to effectively delete an IOU is to issue a new owe command with
the replaces field set to the ID of the old IOU and the amount set to 0 (or perhaps with
the amount multiplied by zero so it’s easy to see what the original amount was—this makes
for a quick-and-dirty audit trail). The advantage of this approach to voiding old IOUs
is that the audit trail for every "deleted" IOU ends with an active IOU. That means no
IOU can ever go fully out-of-sight-out-of-mind. This is important given the liberal access
policy; remember that anyone who has permission to control a pair of accounts (by default,
everyone) can replace IOUs between those accounts.

Chapter 5: Yootles Commands 32

5.9 tran (querying existing IOUs)

The tran call allows retrieval of transaction histories, i.e., a list of past IOUs. Each param-
eter (except atomize) specifies a filter to apply to the IOUs, restricting the set of returned
results. If a parameter has no default value then leaving that parameter unspecified omits
the corresponding filter. With no parameters specified, tran returns every IOU in all of the
invoking user’s groups (see Section 5.7 [grp], page 28).

The parameters for tran are as follows:
• acct1 – Only return IOUs involving a particular account, specified as group:name.
• acct2 – This works identically to acct1. Specify both acct1 and acct2 to get trans-

actions involving a pair of accounts.
• grp – Only return IOUs involving a particular group.
• mine – Only return IOUs involving accounts belonging to the invoking user (i.e., mine

> 0).
• start – The time of the earliest IOU to return (unixtime).
• end – The time of the latest IOU to return (unixtime). Default: -1, meaning the time

of the last explicit IOU, i.e., the maximum of all the IOU times and end times for
repeating IOUs, if specified. For raw IOUs this is equivalent to omitting the end filter
altogether. But because of indefinitely repeating IOUs, it is not well-defined to ask for
all atomic IOUs after a given time.

• all – Only return IOUs that have been replaced (1 means yes). Default: 0, meaning
IOUs will be filtered to exclude replaced IOUs.

• iou – Only return the IOU with the specified ID, plus the IOUs that the specified one
replaced. Note, however, that any replaced IOUs will be filtered out unless all=1.
This also means there is no way to query a single IOU that has been replaced—you
can only query it along with the chain of subsequent IOUs that replaced it.

• atomize – Show atomized IOUs (1 means yes). Default: 0, meaning no, show raw
IOUs which may be repeating and/or multilateral IOUs.

• limit – Limit the IOUs returned to at most the specified number, starting with the
most recent. Default: infinity.

• offset – Skip the specified number of most recent transactions. Default: 0. The
parameters limit and offset are used to retrieve transactions in batches. Note that
offset is zero-based so that, for example, calling tran with limit=10 and offset=100
returns the 101st through the 110th IOU (in reverse chronological order).

Synopsis

tran([acct1=a], [acct2=b], [grp=g], [mine=m], [start=s], [end=e], [all=d], [iou=i])
returns a list of raw IOUs which involve an account in one of the invoking
user’s groups subject to the following constraints (assuming the corresponding
parameter was specified):
• the IOU involves account a

• the IOU involves account b

• the IOU involves an account in group g

Chapter 5: Yootles Commands 33

• at least one of the accounts has mine greater than or equal to m for the
invoking user

• the date of the IOU is on or after s

• the date of the IOU is on or before e (with the default of e=-1 interpreted
as explained above)

• the IOU has not been replaced (if d=0, which is the default, otherwise no
constraint—both replaced and nonreplaced IOUs are returned)

• the IOU has ID i or was eventually replaced by i

For repeating IOUs only the nominal (i.e., initial) IOU date is considered when
comparing to s and e. This means that, for example, a repeating IOU that
starts in 2007 and continues in 2008 will not be included in a query for raw
IOUs in 2008.

tran(..., atomize=1)
is the same as above, in fact returning the exact same IOUs, but in atomized
form, showing only pairwise, nonrepeating IOUs (see Chapter 3 [Data Struc-
tures], page 10). Note that by atomizing post hoc, some atomic IOUs can be
returned that would otherwise be precluded by the filters. For example, a mul-
tilateral IOU from Alice and Bob to Carol is atomized into separate IOUs from
Alice to Carol and Bob to Carol. When IOUs involving Alice are requested,
the atomic IOU from Bob to Carol is returned because it is part of a raw IOU
involving Alice. Only the end field applies directly to the atomized IOUs.

tran(..., [limit=n], [offset=s])
is the same as above but only returns, of the IOUs that would have been
returned otherwise, the s+1st through s+nth results.

When atomize=0 (the default), the output field rtran (for raw transactions) is returned,
which is a list of hash tables, each with the following fields, corresponding roughly to the
fields of the rawIOU data structure (see Chapter 3 [Data Structures], page 10):
• iou – The ID of the IOU.
• amt – The amount, a mathematical expression, the same way it was specified in the

corresponding owe command.
• from – The account(s) issuing the IOU.
• to – The account(s) receiving the IOU.
• fromref – Mirrors from but with each account replaced by, in square brackets, the

alias of the user who has that account as their main account, if such a user exists. The
alias to use is determined by the one the invoker was identified by.

• toref – Analogous to fromref.
• when – The date/time of the IOU (specified in unixtime).
• why – The reason for the IOU.
• rpt – The repeat interval.
• rptunit – Repeat unit.
• til – End time for repeating IOUs.

Chapter 5: Yootles Commands 34

• cur – Currency code.

• grp – Account group for any accounts in from and to with no group specified.

• replaces – The ID of the IOU that this one replaces; -1 means none.

Similarly, when atomize=1, the output field atran (for atomic transactions) is returned,
which is a list of hash tables each with the following fields:

• iou – The ID of the (raw) IOU this atomic IOU is part of.

• amt – The amount, a real number.

• from – The account issuing the IOU.

• to – The account receiving the IOU.

• fromref – The alias of the user whose main account is the account in from.

• toref – Analogous to fromref.

• when – The date/time (specified in unixtime).

• why – The reason for the IOU, taken from the corresponding raw IOU and annotated
to indicate repeating payments and whether it was prorated.

• cur – Currency code.

Finally, an additional output field count gives the total number of entries (raw or atomic
IOUs) that would be returned with offset=0 and limit=infinity (the defaults).

Examples

1: Viewing all (raw) IOUs in any of your groups

alice> tran()

{ "status" : 200,
"message" : "There are 100 IOUs in your (alice’s) groups.",
"count" : 100,
"rtran" : [{"iou":234, "amt":10, "from":"alice:alc+bob", "to":"bob",

"fromref":"[alice]+[bob]", "toref":"[bob]",
"when":1234567890, "why":"for lunch", "rpt":-1,
"rptunit":"year", "til":-1, "cur":"usd",
"grp":"yooniversal", "replaces":-1}, ...] }

2: Viewing all your (atomized) IOUs with a specific account

alice> tran(acct1=yooniversal:bob, atomize=1)

{ "status" : 200,
"message" : "Account yooniversal:bob has 150 IOUs.",
"count" : 150,
"atran" : [{"iou":234, "amt":5, "from":"alice:alc",

"to":"yooniversal:bob", "fromref":"[alice]", "toref":"[bob]",
"when":1234567890, "why":"for lunch", "cur":"usd"}, ...] }

Chapter 5: Yootles Commands 35

Known Bugs

Currently the base set of IOUs is any IOU involving any of the invoking user’s accounts
(accounts for which the invoking user has mine access) rather than all IOUs in all of the
invoker’s groups (see Section 5.7 [grp], page 28). Thus the grp field is currently treated
specially. It both restricts the results to include only IOUs involving accounts in the specified
group, and it also extends the returned results to include IOUs that do not include accounts
belonging to the invoking user.

Additionally, the group prefix can be omitted currently if a group is specified in the grp
field. This overloaded use of the grp field is deprecated and will soon go away. You should
always specify group:account explicitly in the acct1 and acct2 fields.

Finally, fromref and toref do not behave as advertized. In particular, they only work
when there is a single account in the corresponding from or to.

Chapter 5: Yootles Commands 36

5.10 bal_old (querying balances)

The following has been deprecated. See the new bal command documentation in the next
section.

The bal command queries an account’s balance with a specified other account in a
specified currency, or, if another account is not specified, bal returns the primary account’s
balances with every other account for which the balance is nonzero. The user calling bal
must have view access on at least one of the two accounts. By specifying a group but not
an account, you can see the balances with all accounts in a group.

The input parameters and their defaults are as follows:
• acct1 – The account whose balance is to be queried, specified as group:name, or, if

grp is specified, just name. Default: the main account of the invoking user.
• acct2 – A specific account to check balances with.
• asof – Return the balance(s) as of this time, specified in unixtime. Default: now, i.e.,

when the command is issued.
• grp – Group name to prepend to acct1 and acct2. If acct2 is not specified, grp

specifies the group within which to return balances.
• cur – Currency code.

There are two primary ways to use the bal command: specifying an acct2 field or not.
If acct2 is not specified then bal returns acct1’s balance with each of a set of accounts
in the specified currency. A positive balance means acct1 is owed, a negative balance
means acct1 owes, and any account for which a balance is not included has balance zero. If
acct2 is specified then bal returns acct1’s balance with acct2 for each currency (excluding
currencies in which that balance is zero).

Synopsis

bal([acct1=a], [asof=t])
returns account a’s net balance for each currency as of time t.

bal([acct1=a], cur=c, [asof=t])
returns all nonzero balances in currency c for account a as of time t.

bal([acct1=a], cur=c, grp=g, [asof=t])
returns, for each account i in group g, the balance that account a has (as of
time t) with i in currency c. Note the dual use of grp—it specifies the group to
prepend to a (if necessary) and also indicates that the returned balances should
be limited to transactions with accounts in group g.

bal([acct1=a], acct2=b, cur=c, [grp=g], [asof=t])
returns the balance in currency c between accounts a and b as of time t. The
group g, if specified, will be prefixed to a and b if they do not specify a group.

bal([acct1=a], acct2=b, [grp=g], [asof=t])
returns, for each currency i, the balance that account a has (or had at time t)
with account b in currency i. The group g, if specified, will be prefixed to a
and b if they do not specify a group.

Chapter 5: Yootles Commands 37

Examples

1: Querying net balance

alice> bal()

{ "status" : 200,
"message" : "Your (alice:alc’s) net balance is 10 usd and -20 ytl.",
"currencies" : ["usd", "ytl"],
"balances" : [10, -20] }

2: Querying your balance in a group

The following call returns the balances between Alice’s main account and each of the ac-
counts in the jets group:
alice> bal(grp=jets, cur=ytl)

{ "status" : 200,
"message" : "Your (alice:alc’s) net yootles balance in group jets is -3.",
"accounts" : ["jets:bob", "jets:carol"],
"balances" : [-23, 20] }

3: Querying your balance with a specific account, in all currencies

If in the following example acct2 was specified as jets:bob then the grp field would
be superfluous. In fact, with acct2=jets:bob and grp=sharks, the grp field would be
entirely ignored.
alice> bal(acct2=bob, grp=jets)

{ "status" : 200,
"message" : "Your (alice:alc’s) balances with jets:bob are: 12 usd, 3 ytl.",
"currencies" : ["usd", "ytl"],
"balances" : [12, 3] }

4: Querying the balance of another account

Note that in this example currencies and balances are lists (as always when acct2 is
specified) even though there is only one currency requested.
alice> bal(acct1=bob, acct2=carol, cur=ytl, grp=jets, asof=1201150800)

{ "status" : 200,
"message" : "bob’s balance with carol (in group jets) as

of 2008.01.24 is +7 ytl.",
"currencies" : ["ytl"],
"balances" : [7] }

Known Bugs

Specifying grp with no acct2 specified (as in Example 2 and the third synopsis case) should
limit balances to IOUs with accounts in the specified group. Currently this restriction is
not respected and the overall balance is returned.

Chapter 5: Yootles Commands 38

5.11 bal (querying balances)

The bal command works by selecting a set of atomic IOUs and then, for each account
involved in any of those IOUs, computes the balance for that account within that set of
IOUs. In addition, the invoker’s net balance (computed using the invoker’s mine fraction
for each account) within the set of IOUs is returned. The initial set of IOUs is, just as in the
tran command (see Section 5.9 [tran], page 32), all those which include one of the invoker’s
groups (see Section 5.7 [grp], page 28). As with tran, each parameter for bal filters this
set of IOUs. The bal command returns a hash mapping each account to its balance within
the filtered set of IOUs. For example, specifying the grp field gives everyone’s net balance
within a group. And specifying an account gives every other account’s net balance with
that account.

The bal command takes the following parameters:
• acct1 – Show this account’s net balance and everyone’s balance with it.
• acct2 – Assuming acct1 is also specified, return the balance between the two accounts.
• grp – Only show balances within the given group.
• asof – Show balances as of a given time in the past or future. This is analogous to the

end field in the tran command.
• cur – Show balances in the given currency. This field must be specified.

Synopsis

bal([acct1=a], [acct2=b], [grp=g], [asof=t], cur=c)
filters the atomic IOUs in the invoker’s groups according to the following con-
straints (if specified):
• the IOU involves account a

• the IOU involves account b

• the IOU involves an account in group g

• the date of the IOU is no later than t

• the currency of the IOU is c

and then returns for each account included in any of the IOUs, the account’s
net balance within that set of IOUs.

In addition to returning a hash mapping accounts to balances, bal returns a netbal
field with the sum of all the balances in the hash weighted by the invoker’s mine fraction
for the corresponding account.

Examples

1: Querying all account balances and invoker’s net balance

alice> bal(cur=ytl)

{ "status" : 200,
"message" : "Your (alice’s) net balance across all your groups is 97 ytl.",
"bal" : {"alice:alc" : 100, "bob:bob": -100, "carol:crl" : 0,

"jets:alc" : -3, "jets:bob" : -20, "jets:carol" : 23},
"netbal" : 97 }

Chapter 5: Yootles Commands 39

2: Querying everyone’s balances within a given group

alice> bal(grp=jets, cur=ytl)

{ "status" : 200,
"message" : "Your (alice’s) net balance in group jets is -3 ytl.",
"bal" : {"jets:alc" : -3, "jets:bob" : -20, "jets:carol" : 23},
"netbal" : -3 }

3: Querying everyone’s balances with a given account

alice> bal(acct1=alice:alc, cur=ytl)

{ "status" : 200,
"message" : "Account alice:alc has net balance 100 ytl.",
"bal" : {"alice:alc" : 100, "bob:bob" : -100, "carol:crl" : 0},
"netbal" : 100 }

4: Querying a pairwise balance between two accounts

alice> bal(acct1=alice:alc, acct2=bob:bob, cur=ytl)

{ "status" : 200,
"message" : "Account bob:bob owes alice:alc 100 ytl.",
"bal" : {"alice:alc" : 100, "bob:bob" : -100},
"netbal" : 100 }

5: Querying balances as of a given time

alice> bal(acct1=alice:alc, acct2=bob:bob, cur=ytl, asof=1201150800)

{ "status" : 200,
"message" : "As of 2008.01.24, bob:bob owes alice:alc 100 ytl.",
"bal" : {"alice:alc" : 100, "bob:bob" : -100},
"netbal" : 100 }

Known Bugs

This command is currently implemented as a macro on top of tran which makes it slow.
Also, asof must currently be specified as end. Finally, cur can currently be omitted and
the balances will sum across currencies as if they all had 1:1 exchange rates.

Chapter 5: Yootles Commands 40

5.12 intr (querying and setting interest rates)

The intr command allows a user who has view access for either of two accounts to view
the interest rate(s) between those accounts and for a user with ctrl access for either of
two accounts to add or change interest rates between them. In addition to the standard
parameters identifying the user making the call, intr is called with the following parameters:
• acct1 – The first account. Default: the main account of the invoking user.
• acct2 – The second account. (Note that the order of acct1 and acct2 is irrelevant as

interest rates are symmetric.)
• rate – The annual interest rate, expressed as a real number fractional rate, not a

percentage (e.g., 0.05 for 5%).
• date – The date/time, specified in unixtime.

Interest rates between accounts always apply to all currencies. Different currencies can-
not have different interest rates—instead, users can create new accounts to get different
interest rates.

Synopsis

intr([acct1=a], [date=d])
returns a hash table mapping accounts to the interest rates that account a had
set for those accounts on date d (i.e., for the most recent stored date less than
or equal to d). Account a defaults to the main account of the invoking user
and date d defaults to now, the time the call was issued.

intr([acct1=a], acct2=b)
returns the list of date/rate pairs between the accounts a and b.

intr([acct1=a], acct2=b, date=d)
returns the interest rate on date d and the date when that rate went into effect.

intr([acct1=a], acct2=b, [date=d], rate=r)
sets the interest rate between accounts a and b to r, effective on date d (or
now if date is not specified). If d exactly matches an existing entry (and rate
r is different from that entry’s rate), the existing entry will be replaced. If r is
the same as the rate in the preceding entry (preceding by date), the command
is a no-op—the new interest rate is not inserted.1 The date and rate of the
preceding entry (or the replaced entry, if the dates matched) are returned.

Examples

1: Checking your current interest rates with everyone

alice> intr()

{ "status" : 200,
"message" : "Interest rates: bob:b = 5%, jets:carol = 12%.",
"intr" : { "bob:b":0.05, "jets:carol":0.12 } }

1 If you want an identical interest rate inserted, say, 5% on Feb 1 to follow an existing rate of 5% on Jan
1, call the intr command with a date of Feb 1 and a rate of 0% (or anything not equal to 5%) and then
call it again with a date of Feb 1 and a rate of 5%.

Chapter 5: Yootles Commands 41

2: Setting a new interest rate with someone

alice> intr(acct1=alice:alc, acct2=bob:b, rate=0.06, date=1192809600)

{ "status" : 200,
"message" : "Interest rate with bob:b changed to 6%,

effective 2007-10-19 through 2007-10-20.",
"date" : 1192723200,
"rate" : 0.05 }

3: Checking your historical interest rates with someone

alice> intr(acct2=bob:b)

{ "status" : 200,
"message" : "Your interest rate with bob:b has varied

between 5% and 6% and is now 6%.",
"intr" : [{"date":123456789, "rate":0.05},

{"date":123500000, "rate":0.06}] }

4: Checking your interest rate with someone on a particular date

alice> intr(acct2=carol:c, date=1201323600)

{ "status" : 200,
"message" : "Your interest rate with carol:c on 2008-01-26 was 6%

which went into effect on 2007-11-01.",
"date" : "1193889600",
"rate" : 0.06 }

Known Bugs

There is only one "bug": this command has not been implemented yet.

Chapter 5: Yootles Commands 42

5.13 cred (querying and setting credit limits)

The cred command sets and queries credit limits between a (directed) pair of accounts. The
invoking user must have view access (see Section 1.8 [Access Control], page 4) on either
of the two accounts to see the credit limit between them. When extending credit between
accounts the invoking user must have ctrl access on the account extending credit, and
accounts that don’t already exist are created. Any currency or account not listed in the
results has an implied credit limit of zero. Input parameters are as follows:
• from – The account issuing the credit.
• to – The account receiving the credit; if this account doesn’t exist it is automatically

created.
• amt – The amount of credit; must be non-negative.
• cur – Currency code.

Synopsis

cred(to=a, cur=c)
returns a hash table mapping accounts to the credit limits that those accounts
have extended to account a in currency c.

cred(from=a, cur=c)
returns a hash table mapping accounts to the credit limits that account a has
extended credit to those accounts in currency c.

cred(from=a, to=b, cur=c)
returns the credit limit from a to b in currency c.

cred(from=a, to=b)
returns a hash table mapping currencies to credit limits from a to b in each
currency.

cred([from=a], to=b, amt=x, cur=c)
changes the credit limit (from a to b) to x in currency c and returns the previous
amount of credit. Account a defaults to the main account of the invoking user.
(The invoking user must have ctrl access on account a.)

Examples

1: Offering someone credit

alice> cred(from=alice:alc, to=bob:b, amt=7, cur=ytl)

{ "status" : 200,
"message" : "The account bob:b now has a credit limit of

7 yootles (was 0) with alice:alc.",
"cred" : 0 }

2: Checking your credit limit with another account

alice> cred(from=alice:alc, to=bob:b)

Chapter 5: Yootles Commands 43

{ "status" : 200,
"message" : "The account bob:b has a credit limit of

7 yootles and 100 dollars with alice:alc.",
"cred" : {"ytl":7, "usd":100} }

3: Checking your total available credit for a particular currency

alice> cred(to=alice:alc, cur=ytl)

{ "status" : 200,
"message" : "The account alice:alc has a total of 99 yootles of credit.",
"cred" : {"bob:b":11, "jets:carol":88} }

4: Checking the total credit you have extended in a particular
currency

alice> cred(to=alice:alc, cur=ytl)

{ "status" : 200,
"message" : "The account alice:alc has extended 33 yootles of credit.",
"cred" : {"bob:b":11, "jets:carol":22} }

Known Bugs

There is only one "bug": this command has not been implemented yet. All credit limits
are zero. But note that this does not restrict the IOUs that can be issued, it just means
that any balances exceed the credit limits.

Chapter 5: Yootles Commands 44

5.14 cur (managing currencies)

The cur command is used to query or change information about a currency, or to add a
new currency. The parameters for the cur command are as follows:
• code – The short symbolic name for a currency, such as usd for US dollars or ytl for

yootles.
• name – The full name of the currency.
• desc – A short description of the currency.

The output fields are the same as the input fields except in the case that cur is called
with no parameters, in which case the only output field is cur.

Synopsis

cur()
returns a simple list of available currencies (see example 1).

cur(code=c)
returns the code, name, and description if the currency exists. Otherwise, it
returns an error (status = 404) and the empty string in the code field.

cur(code=c, desc=d)
changes the description for the currency, returning the original code, name, and
description. An error like above is returned if the currency does not exist.

cur(code=c, name=n)
changes the name for the currency, returning the original code, name, and
description. An error like above is returned if the currency does not exist.

cur(code=c, name=n, desc=d)
changes the name and description for the currency, returning the original code,
name, and description. If the currency does not exist it is created and empty
strings are returned for all three fields.

Examples

1: Listing all available currencies

alice> cur()

{ "status" : 200,
"message" : "Currencies: ytl, usd, inr, can, beer.",
"cur" : ["ytl", "usd", "inr", "can", "beer"] }

2: Querying the name and description for "ytl"

alice> cur(code=ytl)

{ "status" : 200,
"message" : "Yootles (ytl): A unit of utility or happiness.

Also spelled utils or utiles.",
"code" : "ytl",

Chapter 5: Yootles Commands 45

"name" : "Yootles",
"desc" : "A unit of utility or happiness.

Also spelled utils or utiles." }

3: Creating a new currency, "goats"

alice> cur(code=goat, name="Goats", desc="Actual live goats")

{ "status" : 200,
"message" : "New currency ‘goat’ (Goats) created.",
"code" : "",
"name" : "",
"desc" : "" }

4: Modifying a currency

alice> cur(code=goat, desc="Actual number of live goats")

{ "status" : 200,
"message" : "Description updated to ‘Actual number of live goats’.",
"code" : "goat",
"name" : "Goats",
"desc" : "Actual live goats" }

5: Nonexistent currency

alice> cur(code=nuggets)

{ "status" : 402,
"message" : "Currency code ‘nuggets’ not found.

Provide name and description to create currency.",
"code" : "" }

Chapter 5: Yootles Commands 46

5.15 merge (merging/renaming accounts)

The merge command takes parameters old and new specifying two account names, with old
defaulting to the main account of the user issuing the command. An optional parameter
grp gives the group for the accounts if they are not specified in old and new. The following
steps are performed (where we assume that old is "old:jekyll" and new is "new:hyde"):
• Check that the user has root access on "old:jekyll" and ctrl access on every account

that has issued "old:jekyll" credit or that "old:jekyll" owes (has a negative balance
with). If not, abort with status code 402.1

• Create the account "new:hyde" if it doesn’t exist (including creation of the group "new"
if needed).

• For each nonzero incoming and outgoing credit limit with "old:jekyll", create the same
credit with "new:hyde" and set the credit with "old:jekyll" to zero.

• For each interest rate returned by the intr command (needs to be called once to get
the users, then for each user to get the list of historical interest rates), create the same
interest rate with "new:hyde".

• For each account a with whom "old:hyde" has nonzero balance b:
• Zero the balance by issuing an IOU of b from "old:jekyll" to a with comment

"[renaming old:jekyll -> new:hyde]".
• Issue an IOU of b from a to "new:hyde" with the same comment.

Synopsis

merge(old=x, new=y, [grp=g])
follows the above procedure to merge account x into account y. (If x or y do
not specify groups, use group g.)

Example

alice> merge(old=old:jekyll, new=new:hyde)

{ "status" : 200,
"message" : "Account old:jekyll merged into new:hyde." }

Known Bugs

There is only one "bug": this command has not been implemented yet.

5.16 Acknowledgments

Thanks to Sharad Goel, Dave Morris, Meg West, and Laurie Reeves for providing valuable
comments and fixing errors in early drafts of this documentation.

1 In the future we may want to be more forgiving. This can be done if the user has the same access rights
for "new:hyde" as for "old:jekyll" and if instead of performing the following steps strictly through the
API (which would enforce the ctrl settings) the system instead performs them directly.

Appendix A: Future Features 47

Appendix A Future Features

undo (undoing previous commands)

It should be easy for interfaces to always provide an unobtrusive undo option in lieu of all
confirmation dialogs. Note that we are already set up to arbitrarily undo IOUs since they
are never deleted from the database and they indicate which ones replace which other ones.
This audit trail can be followed using the tran call but it would be simpler to just call the
undo command.

Appendix B: Other Commands in Yootopia 48

Appendix B Other Commands in Yootopia

Some of the following commands are implemented for Yootopia Decisions and Predictions.
All of them are registered on the open.4info.net SMS service.

y0 y1 y2 y3 y4 y5 y6 y7 yab yabb yabbr yabr yac yacc yaccept yacct
yad yadd yala yalarm yali yalias
yalm yand yor yxor ynot yannotate yano
yant yante yany yapi
yapp yapprove yapr yas yask yb yba ybal
ybe ybi ybid ybin
ybu ybuy yby ybye ych
ycl ycle yclear yclo yclose yclosed yclr ycls
ycnt yco ycou ycount ycp ycr ycrd ycre ycred ycredit
ycur ycurr yde ydel yden ydeny
ydir ydis ydispute ydsp ydo ydid
ydon ydonate ydow ydown yem yema yemail yeml
yfav yfavor ygi ygiv ygive ygo
ygrp ygroup yhe yhel yhelp yhlp yhi yhis yhist
yho yhol yhold yholdings yid yinf yinfo
yint yintr yiou yj yk yl
yle yled yledg yledge yledger yli ylis ylist yls ylo yloc ylock
ylog ylogin yma ymai ymail ymch yme ymec ymech
ymer ymerge ymrg ymo ymov ymv yna ynam yname
ynew yold ynom ynote
yon yoff yoo yoot yootles ytl yop yopen yopn
yout yowe ypa ypau ypause
ypay ype ypee ypeek ypl yple ypledge
ypo ypok ypoke ypr yprd ypre ypred ypri yprice
yq yqu yque yquery yquo yquote yra yrat yrate
yre yref yreg yrem yremind
yren yrename yrepu yrepudiate yreq yrequest
yres yreset yresolve yrf yrfq
yrm ys yse ysea ysearch ysee yseed
ysel ysell yset ysom ysome
ysor ysorry ysry yst ysta ystake ystk ystatus
ysto ystop ystats ysts ystt ysub
ysw yswi yswitch yta ytal ytally yth
ytha ythank ythanks ythx yti ytip ytog ytoggle
ytr ytran ytru ytrust ytyp ytype
yun yund yundo yunl yunlock yunp yunpaid yunpay
yunr yunreg yup yupd yupdate yusr yuser
yvo yvoi yvoid yvot yvote yvou yvouch yvch
ywa ywag ywage ywager ywai ywait ywh ywho
ywhy yy yye yyes yno yyay yay yyo yyou

Appendix C: Facebook Application Mockups 49

Appendix C Facebook Application Mockups

C.1 Use case 1: Installing the Yootles application

A user could find the Yootles application through the Facebook application search, by seeing
the widget on someone else’s profile, or through a notification or invite in their messages or
newsfeed.

Appendix C: Facebook Application Mockups 50

The user is taken through the usual Facebook application install procedure, and then we
take them straight to the IOU screen of the yootles widget. The application has a standard-
ized way of automatically selecting a group and account name for their main account from
the information available through Facebook so that there is no setup/registration within
the yootles application beyond installing it.

Appendix C: Facebook Application Mockups 51

C.2 Use case 2.0: entering a simple IOU

This is our most straightforward case of entering an IOU. Let’s say you had dinner with
Alice and she paid the bill. You enter an IOU for your portion.

The "from" field is filled in for you, defaulting to your main account.

When you start typing in the "to" field your contact is auto-completed in Facebook
fashion. Give an amount and a description string and submit.

Notice also that the currency defaults to whatever the default currency for the "from"
account is, but can be changed simply by clicking on it, or using the unobtrusive dropdown.

Appendix C: Facebook Application Mockups 52

Appendix C: Facebook Application Mockups 53

What if Alice hasn’t installed the Yootles app yet? Then when the user clicks the submit
button a small "invite" window will pop up. When they click "invite!" the invitation will
be sent and the IOU issued.

Appendix C: Facebook Application Mockups 54

What if the person you want to issue the IOU to is not on Facebook? This would be
nearly identical to issuing the IOU from "Dad" in the next use case (specifically see 2.1.2,
3).

C.3 Use case 2.1: entering an IOU for someone else

Say your mom also came out to dinner with you and Alice. You know your mom is never
going to get on Facebook and enter her own balance with Alice, but you can enter the IOU
for her. If you provided an email address for her when you created the account she will
get email whenever you enter an IOU on her behalf with a summary of the transaction and
perhaps some general balance info. If by some technical miracle your mom does someday
show up to claim her account, she can review her past transactions, and modify them if

Appendix C: Facebook Application Mockups 55

necessary. (Maybe she didn’t understand the online banking thing and paid Alice back in
person later on).

Appendix C: Facebook Application Mockups 56

What if, instead, it was your Dad who was out to dinner with you, but you’ve never
entered an IOU from him before, so his name doesn’t show up in your list?

You select "enter new" and start typing. Facebook will try to complete for you from
your friends list, but if the person is not on Facebook, that is OK too. A new account will

Appendix C: Facebook Application Mockups 57

be created for them behind the scenes, and a little notification will show up underneath the
widget after you have submitted (see the last illustration for this case).

Appendix C: Facebook Application Mockups 58

Appendix C: Facebook Application Mockups 59

Appendix C: Facebook Application Mockups 60

C.4 Use case 2.2: entering more complex transactions

This is not a fully fleshed out example of how to lead a user through entering a more
complex transaction, but hopefully it is a good enough beginning to give some ideas. The
goal here is to provide a way to lead users through the process step-by-step, and have the
widget construct the IOU in front of them, so that at the end of the process you would see
how the complex IOU is constructed, and if you get it you could just enter it yourself next
time (me+mo+larry+curly ... etc), but can always use the walkthrough if you need it.

Appendix C: Facebook Application Mockups 61

Appendix C: Facebook Application Mockups 62

C.5 Use case 3: balances and managing your accounts

Here is a look at the balances page. This is where you would enter an email address for
your mom if she wanted to get notifications about all the transactions you are entering that
include her. You can see your net balance and look at the specific balances and transaction

Appendix C: Facebook Application Mockups 63

histories between pairs of accounts. You can also create new accounts here, and there is
some information to introduce you to the idea of groups.

Appendix C: Facebook Application Mockups 64

Appendix C: Facebook Application Mockups 65

Index 66

Index

A
account group 1, 7, 8, 10, 11, 28
acct . 26
alias . 23
atomic IOU . 1

B
bal . 38
bal_old . 36

C
cred . 42
credit . 4
cur . 44
currency . 4
currency, yootles . 1

D
data structures . 10
data type . 10

E
email . 5, 7, 15, 23, 25

F
Facebook . 7, 15, 19
fund-raising . 8

G
goats . 45
group, account 1, 7, 8, 10, 11, 28
grp . 28

H
Hyde, Mr. 46

I
interest . 4, 11, 40
intr . 40
IOU . 1
IOU, atomic . 1
IOU, multilateral . 2
IOU, raw . 32
IOU, repeating . 2

J
Jekyll, Dr. 46
JSON . 16

K
key . 14, 15, 19, 25

L
Lisp . 17

M
Madeleine, Monsieur . 19
Mathematica . 17
merge accounts . 5, 8, 46
multilateral IOU . 2

O
owe . 30

P
Perl . 17
PHP . 17

R
raw IOU . 32
reg . 22
rename . 46
rename an account . 5, 8, 46
repeating IOU . 2
request . 25

S
settlement . 1
SMS . 15, 48

T
tran . 32

U
undo . 47
unixtime . 10
usr . 19

Index 67

V
Valjean, Jean . 19

X
XML . 17

Y

Yahoo Messenger . 15, 16

YAML . 17

yootles currency . 1

	The Yootles System
	Yootles Accounts vs. Yootles Users
	IOUs
	Repeating IOUs
	Multilateral IOUs
	Currencies
	Interest
	Credit
	Access Control

	Use Cases
	Issuing IOUs between Facebook users
	Issuing an IOU in Facebook to someone not on Facebook
	Fund-raising with Yootles
	Shared water bill
	Renaming an account

	Data Structures for Yootles
	Data Structures Related to Accounts and IOUs
	group
	account
	currency
	rawIOU
	atomicIOU
	intRate
	credit

	Data Structures Related to Users
	user
	aliastype
	alias
	access

	The Yootles API
	API Calls by Users
	API Calls by Trusted Applications
	API Output
	Output Formats

	Special Syntax for Specifying Accounts and Aliases
	Specifying users by alias
	Bracket syntax for indirectly specifying accounts
	Macro for username of invoking user

	Yootles Commands
	usr (updating and querying users)
	Synopsis
	Examples

	addusr (creating new users)
	Synopsis
	Example

	reg (macro for registering/bootstrapping a new user into the system)
	alias (creating, updating, and querying user aliases)
	Synopsis
	Examples

	request (email a user their username and password)
	Synopsis
	Example
	Known Bugs

	acct (querying and setting access control)
	Synopsis
	Examples

	grp (querying and adding account groups)
	Synopsis
	Examples

	owe (adding or modifying an IOU)
	Synopsis
	Example

	tran (querying existing IOUs)
	Synopsis
	Examples
	Known Bugs

	bal_old (querying balances)
	Synopsis
	Examples
	Known Bugs

	bal (querying balances)
	Synopsis
	Examples
	Known Bugs

	intr (querying and setting interest rates)
	Synopsis
	Examples
	Known Bugs

	cred (querying and setting credit limits)
	Synopsis
	Examples
	Known Bugs

	cur (managing currencies)
	Synopsis
	Examples

	merge (merging/renaming accounts)
	Synopsis
	Example
	Known Bugs

	Acknowledgments

	Future Features
	Other Commands in Yootopia
	Facebook Application Mockups
	Use case 1: Installing the Yootles application
	Use case 2.0: entering a simple IOU
	Use case 2.1: entering an IOU for someone else
	Use case 2.2: entering more complex transactions
	Use case 3: balances and managing your accounts

	Index

